COURSE OUTLINE

(1) GENERAL

SCHOOL	SCHOOL OF SCIENCES				
ACADEMIC UNIT	DEPARTMENT OF MATHEMATICS				
LEVEL OF STUDIES	UNDERGRADUATE PROGRAM				
COURSE CODE	SEMESTER D				
COURSE TITLE	ORDINARY DIFFERENTIAL EQUATIONS I				
INSTRUCTOR	Konstantinos Housiadas				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOU	IRS	CREDITS
			TEXCIII O		
			6		9
COURSE TYPE	General back	ground			9
COURSE TYPE PREREQUISITE COURSES:	General back	ground			9
		ground			9
PREREQUISITE COURSES:	NO	ground			9
PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION	NO	ground			9
PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS:	NO GREEK	ground			9
PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS: IS THE COURSE OFFERED TO	NO GREEK YES				

(2) LEARNING OUTCOMES

Learning outcomes

By completing this course, student should demonstrate competency in the following skills:

- To understand and suitably apply the basic concepts of ordinary differential equations in solving initial value problems.
- To categorize physical processes to the life or physical science they belong to (such a Mathematical Biology and Physics respectively) and also model them by using ordinary differential equations.

General Competences

Working independently. Team working. Working in an interdisciplinary environment. Decision-making. Production of free, creative and inductive thinking.

(3) SYLLABUS

First order equations: Special types (Exact, separable, linear, Bernoulli, Riccati, homogeneous, Clairaut, Lagrange); The notion of integrating factor; Fundamental theorems on the existence and uniqueness of solutions (Picard-Lindelöf, the notion of maximal interval of existence, Peano's theorem). Higher order linear equations: Existence and uniqueness of solutions. Homogeneous equations (superposition of solutions, linearly independent solutions, formulation of the general solution, Wronskians, Abel-Liouville theorem); Non-homogeneous equations (formulation of the general solution, d'Alembert's method on the reduction of order); Homogeneous equations with constant coefficients (characteristic polynomial, form of the general solution); Special solutions of non-homogeneous equations (method of undetermined coefficients, Lagrange's variation of parameters method); Euler-Cauchy equations. Introduction to linear systems: the method of eigenvalues-eigenvectors. Introduction on the analysis of scalar flows.

TEACHING MATERIAL	The teaching material of the course is uniformly distributed during the
DISTRIBUTION	semester.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face lectures			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY	 Communication with students via e-mail. Potential case studies with suitable symbolic and numerical computations scientific software. 			
TEACHING METHODS	Activity	Semester workload		
	Lectures	52		
	Tutorials	26		
	Independent study	147		
	Course total (25 per ECTS)	225		
COURSE COMMITMENTS	Attending course and tutorial sessions is not obligatory.			
STUDENT PERFORMANCE	Student's performance is evaluated in Greek, by a written			
EVALUATION	examination paper which includes short-answer questions			
	and problem solving. Disabled students are evaluated by			
	suitably structured examinations (pending on the disability			
	of the student, e.g., oral exams, etc.).			

(5) ATTACHED BIBLIOGRAPHY

- 1. W. E. Boyce and R. DiPrima. *Elementary differential equations and boundary value problem,* 10th ed. Wiley2012.
- 2. J. C. Robinson. An introduction to Ordinary Differential Equations. Cambridge texts in Applied Mathematics. Cambridge University Press, 2004.
- Related academic journals: Academic journals focused in the field of Differential equations, Mathematical Analysis, and Mathematical Physics.